Close Menu
Український телекомунікаційний портал
    Facebook X (Twitter) Instagram Threads
    Український телекомунікаційний портал
    • Новини
    • Мобільна техніка
    • Технології
    • ПЗ
    • Наука
    • Транспорт
    • Дім
    • Обладнання
    • Здоров’я
    Facebook X (Twitter) YouTube Telegram
    Український телекомунікаційний портал
    Home»Новини»Технології»Почему ИИ – это тупиковая ветвь развития технологий
    Технології

    Почему ИИ – это тупиковая ветвь развития технологий

    ВолодимирBy Володимир02.10.20195 коментарів3 Mins Read
    Facebook Twitter Email Telegram Copy Link

    Под термином «искусственный интеллект» зачастую имеются в виду нейросети, построенные на технологии глубокого машинного обучения. Причем технология обучения нейросетей хорошо отработана и дает свои плоды. Однако не все ученые разделяют мнение о том, что искусственный интеллект должен развиваться именно по этому пути. Кто-то даже полагает, что таким системам «не стоит доверять» и ни к чему хорошему их развитие не приведет.

    Почему машинное обучение – это плохо для развития человечества

    В масштабной работе, опубликованной на страницах издания Тechnologyreview, профессор Нью-Йоркского университета, специалист в области когнитивистики (науки о познании) Гэри Маркус рассказал, чем чревато повсеместное использование нейросетей на основе глубокого машинного обучения.

    Во-первых, ученый считает, что у технологии есть явные ограничения. В частности, уже давно ведутся разговоры о том, что требуется создать, так называемый, «настоящий ИИ», который подойдет для решения широкого круга задач, а не какой-то одной конкретной, как происходит сейчас. Существующие ИИ-системы уже подошли к пику своего развития и им практически «некуда расти». К тому же нельзя просто взять и, скажем сначала научить один ИИ водить машину, а другой заставить чинить ее и затем объединить системы, создав универсального помощника. Искусственные интеллекты просто не смогут взаимодействовать, так как «учились по-разному».

    Вы можете обучить ИИ играть на Atari лучше человека, но сделать хороший робомобиль — вряд ли. Хотя эта задача тоже довольно узкоспециализированная. Глубокое обучение хорошо проявляет себя в анализе больших данных, но алгоритмы не видят причинно-следственной связи и плохо воспринимают любую перемену условий. Сдвиньте элементы в компьютерной игре на два-три пикселя, и обученный ИИ станет неэффективным. Сделайте поле для игры в го не квадратным, а прямоугольным, и искусственный разум проиграет даже начинающему игроку.

    Как сделать ИИ умнее

    Для того, чтобы алгоритмы стали более эффективными, их нужно «обучать иначе». Необходимо сделать так, чтобы они начинали видеть взаимосвязь объектов и последствий от взаимодействия с ними. В данном случае лучшим примером послужим мы с вами.

    Наберите студентов-стажеров, и они через несколько дней начнут работать над любой проблемой — от юриспруденции до медицины. Не потому, что все из них умные. А от того, что люди имеют общее представление об окружающем мире, а не частное.

    Причем то, что предлагает Маркус совсем не ново. Описанный выше пример — это то, как ученые представляли себе «классический ИИ». Только вот для того, чтобы такой ИИ эффективно работал, нам нужно заранее запрограммировать все возможные исходы. А это практически нереально. Но выход есть.

    Решением может быть своего рода симбиоз «классического ИИ», который видит взаимосвязи и получает решения понятным образом, и глубокого обучения, способного находить вариант решения путем «проб и ошибок». Это может быть некая базовая система правил и предписаний, касающихся окружающего мира. На их основе ИИ-системы уже и смогут развивать себя в определенной области. Настоящий искусственный интеллект должен осознать, как работает все вокруг для того, чтобы понять причинно-следственные связи и легко переключиться с одной задачи на другую. Современные системы, созданные с помощью технологии глубокого обучения, на такое просто-напросто не способны. Источник

    Читайте також

    Інженери створили бездротовий чип зі швидкістю, як у оптоволокна

    23.01.2026

    Експерт: безробіття – не головна проблема, яку несе штучний інтелект

    22.01.2026

    Механічні «пожежники»: як роботи-собаки допомагають боротися з вогнем

    19.01.2026

    Останні

    Сигаретні недопалки можуть стати новим джерелом чистої енергії

    24.01.2026

    Глобальне потепління може пришвидшувати старіння людини на клітинному рівні

    24.01.2026

    Представлено новий Kia Sportage Platinum Edition

    24.01.2026

    Тропічні океани колись були головними «фабриками» кисню на Землі

    23.01.2026
    Facebook X (Twitter) YouTube Telegram RSS
    • Контакти/Contacts
    © 2026 Portaltele.com.ua. Усі права захищено. Копіювання матеріалів дозволено лише з активним гіперпосиланням на джерело.

    Type above and press Enter to search. Press Esc to cancel.

    Go to mobile version