Close Menu
Український телекомунікаційний портал
    Facebook X (Twitter) Instagram Threads
    Український телекомунікаційний портал
    • Новини
    • Мобільна техніка
    • Технології
    • ПЗ
    • Наука
    • Транспорт
    • Дім
    • Обладнання
    • Здоров’я
    Facebook X (Twitter) YouTube Telegram
    Український телекомунікаційний портал
    Home»Новини»Прорыв в создании аккумуляторов позволит зарядить смартфон за 6 минут
    Новини

    Прорыв в создании аккумуляторов позволит зарядить смартфон за 6 минут

    ВолодимирBy Володимир11.08.20157 коментарів3 Mins Read
    Facebook Twitter Email Telegram Copy Link

    battery

    Аккумулятор — самая больная тема как производителей, так и потребителей. Разработчики процессоров должны учитывать сегодняшние технологии создания аккумуляторов, дабы смартфон не разряжался за 5 минут после включения какой-либо игры. Ограничение в производительности влечет к отсутствию желания у разработчиков игр начинать разработку крупных проектов, и именно поэтому сегодня по-настоящему современных мобильных игр с использованием продвинутой графической составляющей очень мало.

    Объем оперативной памяти так же негативно сказывается на трате ресурсов батареи, как и разрешение дисплея: чем выше плотность пикселей, тем экран требует больше энергии. Что из этого следует? Практически все компоненты смартфона — за исключением камеры — зависят от аккумулятора. И именно поэтому ключевой для исследователей должна стать разработка новых решений в создании аккумуляторов.

    Массачусетский технологический институт совместно с университетом Цинхуа в Китае при поддержке национального научного фонда и национального фонда естественных наук Китая разработали новую технологию создания дисплеев. Как известно, аккумулятор состоит из электродов (анод заряжен отрицательно, катод положительно), жидкого электролита, а также ионов лития, которые перемещаются из катода в анод через электролит, становясь то положительно заряженными, то отрицательно заряженными.

    Когда вы заряжаете смартфон, ионы лития переходят из катода к аноду, если девайс не на зарядке, ионы лития медленно перемещаются по электролиту из анода обратно в катод. Это процесс называют циклом заряда. И этих циклов может быть огромное множество. Каждый раз ионы то наполняют, то опять покидают анод. А анод достаточно хрупкий, в качестве материала там выступает графит, являющийся формой углерода. Подобные уменьшения и расширения подвергают стенки анода разрушению, что приводит батарею в негодность.

    Battery

    И здесь на помощь приходит новая разработка. Суть её состоит в том, что в качестве материала анода выступают наночастицы, которые имеют структуру яйца (белок и желток). В качестве желтка выступает алюминий, а роль белка выпала диоксиду титана. Однако почему именно желток, а не ядро, например? В нанотехнологии это два разных понятия. Ядро окутано так называемой пленкой, тогда как желток также окутан неким материалом, но между двумя материалами имеется пустое пространство, что и стало главной особенностью технологии.

    MIT-Nanoparticles-for-Batteries_0

    Отметим, ёмкость анода из графита составляет 0,35 ампер-часа на грамм, ёмкость же анода, состоящего из алюминия, составляет 2 ампер-часа на грамм. Разница существенна.

    Однако почему ранее алюминий не был использован в создании аккумуляторов? Всему виной его взрывоопасность: если использовать алюминий в качестве анода, он будет расширяться и уменьшаться, а это существенная нагрузка, что приведет с большой вероятностью к взрывам и возгораниям. Алюминий в чистом виде в качестве анода опасен. Также при контакте с жидким электролитом алюминий будет образовывать межфазный слой, который при существенных расширениях и уменьшениях в дальнейшем разрушится, затрудняя перемещение ионов лития.

    Яйцевидная структура позволила избавиться от данных проблем. Во-первых, пустое пространство между слоем диоксида титана и алюминием не позволит второму каким-либо образом деформироваться, что «сводит на нет» риски возгорания. Во-вторых, диоксид титана не столь подвижен, поэтому межфазный слой не будет разрушен и прямого контакта алюминия и электролита не произойдет.

    После 500 циклов зарядки были получены финальные результаты: ёмкость анода составила 1,2 ампер-часа на грамм, что в 3 раза лучше показателей графита, а при быстрой зарядке (6 минут) получили ёмкость равную 0,66 ампер-часа на грамм, что уже в 2 раза выше результатов популярных сегодня на рынке решений.

    А каково мнение читателей? Есть ли будущее у данной технологии? Или же большинство из вас придерживается позиции «поживем — увидим»?

    По материалам MIT

    Взято с androidinsider.ru

    Читайте також

    У шахті Південної Дакоти будують детектор для розгадки таємниць антиматерії

    04.02.2026

    Вчені з’ясували, як річка могла текти «вгору»

    04.02.2026

    У Windows 11 з’явилася функція виявлення кіберзагроз

    04.02.2026

    Останні

    Вчені знайшли нову імунну підказку щодо тривалих симптомів COVID

    04.02.2026

    У шахті Південної Дакоти будують детектор для розгадки таємниць антиматерії

    04.02.2026

    Вчені з’ясували, як річка могла текти «вгору»

    04.02.2026

    У Windows 11 з’явилася функція виявлення кіберзагроз

    04.02.2026
    Facebook X (Twitter) YouTube Telegram RSS
    • Контакти/Contacts
    © 2026 Portaltele.com.ua. Усі права захищено. Копіювання матеріалів дозволено лише з активним гіперпосиланням на джерело.

    Type above and press Enter to search. Press Esc to cancel.

    Go to mobile version