Введение
Как известно, аппетит растёт во время еды. Не успели мы привыкнуть к беспроводным сетям, как пропускной способности уже стало не хватать. Действительно, с появлением сетевых мультимедийных центров (к примеру, iCube Play@TV NMP-4000: сетевой мультимедийный плеер) возникают такие задачи, как передача по беспроводной сети потока DVD. Поэтому Институт инженеров по электротехнике и электронике (IEEE) одобрил создание рабочей группы 802.11n. Целью группы стала разработка нового физического уровня (PHY) и уровня доступа к среде передачи (MAC), которые позволили бы достичь реальной скорости передачи данных, как минимум, в 100 Мбит/с. То есть увеличить её в сравнении с существующими сегодня решениями примерно в четыре раза (мы имеем в виду реальную пропускную способность). Всё это, вместе с обратной совместимостью с существующими стандартами, должно будет не только сделать работу в беспроводных сетях более комфортной, но и обеспечить достаточный запас скорости на ближайшее будущее.
Сравнение скорости различных стандартов | ||
Стандарт беспроводной связи | Скорость работы | Реальная скорость передачи данных |
802.11b | 11 Мбит/с | 5 Мбит/с |
802.11g | 54 Мбит/с | 25 Мбит/с |
802.11a | 54 Мбит/с | 25 Мбит/с |
802.11n | 200+ Мбит/с | 100 Мбит/с |
Самое непосредственное участие в разработке и процессе развития стандарта принимает компания Intel, которая возглавила комитет, разрабатывающий основу для реализации стандарта. В сферу деятельности компании входит также разработка уровней MAC и PHY и другие аспекты. Безусловно, Intel сегодня является технологическим лидером в этой области, однако для разработки окончательных спецификаций стандарта необходимы усилия многих компаний.
В разработке стандарта 802.11n Intel предлагает пойти эволюционным путём, используя уже проверенные технологии, добавив к ним новые разработки, позволяющие достичь высоких скоростей передачи данных. Например, в 802.11n предлагается использовать такие «наследственные» технологии, как OFDM (ортогональное частотное мультиплексирование) и QAM (квадратурная амплитудная модуляция). Подобный подход не только обеспечит обратную совместимость, но и снизит стоимость разработки. Перед инженерами стоит нелёгкая задача, ведь новый стандарт не должен мешать работе старых устройств 11a/g, и в то же время, он должен поддерживать высокую скорость работы. Многие читатели знакомы со снижением скорости работы сетей 802.11g при одновременном использовании устройств 11b. Надеемся, что в новом стандарте такого не будет.
Увеличение физической скорости передачи
Первый способ увеличения скорости беспроводной передачи данных использует несколько антенн для передатчика и приёмника. Технология называется множественным вводом/выводом MIMO (multiple input multiple output). В случае её использования параллельно передаётся множество сигналов, увеличивая тем самым суммарную пропускную способность. Вообще, у MIMO достаточно много преимуществ из-за одновременной передачи данных по разным каналам. Технология использует мультиплексирование Spatial Division Multiplexing (SDM), то есть сигнал передаётся по нескольким различным частотам, после приёма превращаясь в скоростной поток данных. Однако для реализации MIMO на практике необходимо, чтобы для каждого потока данных использовались свои антенны приёма/передачи, цепи RF и АЦП. Но использование более двух антенных цепей RF может привести к значительному повышению стоимости устройства, так что разработчикам придётся искать определённый баланс между скоростью и ценой.
Кроме того, Intel предлагает повысить скорость беспроводной связи, расширив частотные диапазоны каналов. В принципе, идея эта отнюдь не нова. Из теоремы Шеннона следует, что теоретический предел пропускной способности «C» повышается при увеличении частотного диапазона «B» (C=B log2(1+SNR)).
Расширив частотный диапазон, можно сравнительно недорого и легко увеличить скорость работы сети. При этом нагрузка на ЦСП вырастет незначительно. При хорошей реализации каналы по 40 МГц могут дать полезную пропускную способность в два с лишним раза больше, чем два канала старых стандартов 802.11 (см. ниже). Добавив к этому MIMO, можно создать мощные и недорогие системы с высокой скоростью передачи.
Если же использовать MIMO с каналами по 20 МГц, то стоимость такой системы возрастает. Дело в том, что нужные нам 100 Мбит/с на физическом уровне здесь можно получить только при трёх антенных цепях на передатчике и приёмнике.
На следующем графике приведена зависимость теоретической пропускной способности OTA от значения SNR, которое измерялось после спаривания каналов. Эффективность уровня MAC составляет 70%, то есть реальные 100 Мбит/с превращаются в теоретические 140 Мбит/с. График позволяет сравнить эффективность работы сетей на 20-МГц и 40-МГц каналах. Расшифровка легенды следующая: «2×2-40 MHz» означает два потока данных, две антенные цепи на приёмнике и передатчике и каналы по 40 МГц.
Как видим, реализация 2×3-20 имеет лучший показатель SNR, чем 2×2-20. Это приведёт к увеличению радиуса действия сети при равной скорости. В то же время, график наглядно показывает, что использование двух потоков MIMO 20 МГц не позволяет достичь 100 Мбит/с реальной скорости. Для этого необходимо использовать три потока MIMO, как мы уже говорили выше. Преимущество подхода 2×2-40 здесь очевидно. Обратите внимание, что удвоение числа RF-цепей с каналами по 20 МГц и передача четырёх потоков MIMO даёт меньшую производительность, чем два канала по 40 МГц. Поэтому переход на 40-МГц каналы позволит не только снизить сложность и стоимость систем, но и повысить производительность.
Intel считает, что совместное использование технологий позволит выполнить требования будущего стандарта 802.11n. Если сделать ставку на увеличение используемой полосы частот совместно с технологией MIMO, то удастся не только достичь требуемых 100 Мбит/с, но и сохранить при этом низкую стоимость оборудования. Например, использование 40-мегагерцовых каналов и технологии MIMO в будущем позволит даже превзойти требования стандарта по мере развития возможностей ЦСП (вспомним закон Мура). Устройства 802.11n будут поддерживать как 20-, так и 40-МГц каналы, при этом 40-МГц каналы будут образовываться из двух смежных 20-МГц. Таким образом, если частотный спектр будет перегружен или надо будет связаться по старому стандарту, устройство может перейти на узкие 20-МГц каналы. Надеемся, что в момент выхода стандарта законодательные органы примут соответствующие поправки, разрешающие использование 40-мегагерцовых каналов там, где это пока запрещено.
Чтобы получить физическую скорость 100 Мбит/с, 802.11n должен поддерживать технологию MIMO не меньше, чем для двух потоков. Для этого потребуются, как минимум, две антенные цепи на каждом устройстве стандарта 802.11n. Опционально устройства смогут поддерживать и большее число потоков MIMO, но не больше четырёх.
Кроме того, в 802.11n могут быть внесены различные опциональные решения, увеличивающие пропускную способность. Сюда относятся увеличение числа антенных цепей, адаптивные каналы, технология кодирования FEC и т.д.
Конечно же, высокую скорость нельзя получить без эффективных механизмов управлением физическим уровнем. Хотя уровень MAC и не влияет напрямую на физическую скорость передачи, он играет важную роль при выборе режимов оптимизации передачи PHY. Первоначально связь будет устанавливаться средствами физического уровня, а уже затем, со временем, подключится MAC-уровень, который определит долговременные параметры связи типа модуляции, кодирования, конфигурации антенн, частотных диапазонов каналов и т.д.
Повышаем эффективность передачи на MAC-уровне
Конечно же, изменения коснутся и MAC-уровня, который получит новые функции. Важно понимать, что скорость передачи существенно ограничивается заголовками PHY и задержками. К сожалению, они плохо поддаются улучшению. Более того, заголовки PHY приходится делать даже больше, чтобы поддержать новые режимы.
В 802.11n будет введён режим передачи нескольких кадров MAC в блок данных физического уровня (агрегация). Также появляются и блочные подтверждения (Block ACK) на запросы нескольких кадров (BAR). Таким образом, теперь не нужно начинать процедуру передачи отдельно для каждого кадра. Если не использовать блочную передачу, то для скорости 100 Мбит/с потребовались бы 500 Мбит/с на уровне PHY.
Блочная передача данных будет работать в обоих направлениях. Что интересно, Intel предусматривает MAC-кадры нового формата, которые позволят создавать пакеты PHY с информацией сразу для нескольких клиентов.
Совместимость со старыми стандартами 802.11
Рабочая группа IEEE гарантирует обратную совместимость новых устройств 802.11n с оборудованием 802.11a/b/g при условии использования одного и того же частотного диапазона и канала. Другими словами, как мы уже говорили, поддержка 20-мегагерцовых каналов пригодится для обратной совместимости.
Совместимость с существующим оборудованием 802.11a/b/g будет обеспечиваться средствами MAC-уровня. То есть все существующие устройства стандартов 802.11a/b/g смогут подключаться к точкам доступа 802.11n. На уровне MAC также будет обеспечена совместимость схем модуляции для соответствующих частотных диапазонов. Естественно, придётся решить проблемы, возникающие при взаимодействии оборудования различных стандартов.
Заключение
Сегодня беспроводные сети стандартов 802.11a/b/g обеспечивают достаточную скорость для большинства задач. Однако ситуация меняется на глазах. В ответ на растущие требования IEEE и Wi-Fi Alliance уже приготовили планы развития следующего поколения WLAN.
Intel планирует не только достичь реальной пропускной способности в 100 Мбит/с, но даже превысить её. Технология 802.11n будет поддерживать все основные платформы, включая бытовую технику, персональные и карманные компьютеры. Новое поколение Wi-Fi будет работать как на предприятиях, так и в местах общественного доступа и дома.
Ключевыми моментами в разработке будущего стандарта беспроводных сетей будут стоимость и производительность. Intel считает, что для этого необходимо использовать как технологию MIMO, так и более широкие каналы. В то же время, эффективную пропускную способность удастся повысить и за счёт новых возможностей уровня MAC. Мы будем держать вас в курсе работы над 802.11n.
В статье использованы материалы Intel.
… [Trackback]
[…] Read More on to that Topic: portaltele.com.ua/articles/protocols-and-standards/80211n.html […]
… [Trackback]
[…] Read More on that Topic: portaltele.com.ua/articles/protocols-and-standards/80211n.html […]