Close Menu
Український телекомунікаційний портал
    Facebook X (Twitter) Instagram Threads
    Український телекомунікаційний портал
    • Новини
    • Мобільна техніка
    • Технології
    • ПЗ
    • Наука
    • Транспорт
    • Дім
    • Обладнання
    • Здоров’я
    Facebook X (Twitter) YouTube Telegram
    Український телекомунікаційний портал
    Home»Статті»Протоколи та стандарти»Локально адаптивный алгоритм сжатия
    Протоколи та стандарти

    Локально адаптивный алгоритм сжатия

    ВолодимирBy Володимир04.06.20106 коментарів5 Mins Read
    Facebook Twitter Email Telegram Copy Link

    Этот алгоритм используется для кодирования (L,I), где L строка длиной N, а I – индекс. Это кодирование содержит в себе несколько этапов.

    1. Сначала кодируется каждый символ L с использованием локально адаптивного алгоритма для каждого из символов индивидуально. Определяется вектор целых чисел R[0],…,R[N-1], который представляет собой коды для символов L[0],…,L[N-1]. Инициализируется список символов Y, который содержит в себе каждый символ из алфавита Х только один раз. Для каждого i = 0,…,N-1 устанавливается R[i] равным числу символов, предшествующих символу L[i] из списка Y. Взяв Y = [‘a’,’b’,’c’,’r’] в качестве исходного и L = ‘caraab’, вычисляем вектор R: (2 1 3 1 0 3).

    2. Применяем алгоритм Хафмана или другой аналогичный алгоритм сжатия к элементам R, рассматривая каждый элемент в качестве объекта для сжатия. В результате получается код OUT и индекс I.

    Рассмотрим процедуру декодирования полученного сжатого текста (OUT,I).

    Здесь на основе (OUT,I) необходимо вычислить (L,I). Предполагается, что список Y известен.

    1. Сначала вычисляется вектор R, содержащий N чисел: (2 1 3 1 0 3).

    2. Далее вычисляется строка L, содержащая N символов, что дает значения R[0],…,R[N-1]. Если необходимо, инициализируется список Y, содержащий символы алфавита X (как и при процедуре кодирования). Для каждого i = 0,…,N-1 последовательно устанавливается значение L[i], равное символу в положении R[i] из списка Y (нумеруется, начиная с 0), затем символ сдвигается к началу Y. Результирующая строка L представляет собой последнюю колонку матрицы M. Результатом работы алгоритма будет (L,I). Взяв Y = [‘a’,’b’,’c’,’r’] вычисляем строку L = ‘caraab’.

    Наиболее важным фактором, определяющим скорость сжатия, является время, необходимое для сортировки вращений во входном блоке. Наиболее быстрый способ решения проблемы заключается в сортировке связанных строк по суффиксам.

    Для того чтобы сжать строку S, сначала сформируем строку S’, которая является объединением S c EOF, новым символом, который не встречается в S. После этого используется стандартный алгоритм к строке S’. Так как EOF отличается от прочих символов в S, суффиксы S’ сортируются в том же порядке, как и вращения S’. Это может быть сделано путем построения дерева суффиксов, которое может быть затем обойдено в лексикографическом порядке для сортировки суффиксов. Для этой цели может быть использован алгоритм формирования дерева суффиксов Мак-Крейгта. Его быстродействие составляет 40% от наиболее быстрой методики в случае работы с текстами. Алгоритм работы с деревом суффиксов требует более четырех слов на каждый исходный символ. Манбер и Майерс предложили простой алгоритм сортировки суффиксов строки. Этот алгоритм требует только двух слов на каждый входной символ. Алгоритм работает сначала с первыми i символами суффикса а за тем, используя положения суффиксов в сортируемом массиве, производит сортировку для первых 2i символов. К сожалению этот алгоритм работает заметно медленнее.

    В работе [1] предложен несколько лучший алгоритм сортировки суффиксов. В этом алгоритме сортируются суффиксы строки S, которая содержит N символов S[0,…,N-1].

    1. Пусть k число символов, соответствующих машинному слову. Образуем строку S’ из S путем добавления k символов EOF в строку S. Предполагается, что EOF не встречается в строке S.

    2. Инициализируем массив W из N слов W[0,…,N-1] так, что W[i] содержат символы S’[i,…,i+k-1] упорядоченные таким образом, что целочисленное сравнение слов согласуется с лексикографическим сравнением для k-символьных строк. Упаковка символов в слова имеет два преимущества: это позволяет для двух префиксов сравнить сразу k байт и отбросить многие случаи, описанные ниже.

    3. Инициализируется массив V из N целых чисел. Если элемент V содержит j, он представляет собой суффикс S’, чей первый символ равен S’[j]. Когда выполнение алгоритма завершено, суффикс V[i] будет i-ым суффиксом в лексикографическом порядке.

    4. Инициализируем целочисленный массив V так, что для каждого i = 0,…,N-1 : V[i]=i.

    5. Сортируем элементы V, используя первые два символа каждого суффикса в качестве ключа сортировки. Далее для каждого символа ch из алфавита выполняем шаги 6 и 7. Когда эти итерации завершены, V представляет собой отсортированные суффиксы S и работа алгоритма завершается.

    6. Для каждого символа ch’ в алфавите выполняем сортировку элементов V, начинающихся с ch, за которым следует ch’. В процессе выполнения сортировки сравниваем элементы V путем сопоставления суффиксов, которые они представляют при индексировании массива W. На каждом шаге рекурсии следует отслеживать число символов, которые оказались равными в группе, чтобы не сравнивать их снова. Все суффиксы, начинающиеся с ch, отсортированы в рамках V.

    7. Для каждого элемента V[i], соответствующего суффиксу, начинающемуся с ch (то есть, для которого S[V[i]] = ch), установить W[V[i]] значение с ch в старших битах и i в младших битах. Новое значение W[V[i]] сортируется в те же позиции, что и старые значения.

    Данный алгоритм может быть улучшен различными способами. Одним из самоочевидных методов является выбор символа ch на этапе 5, начиная с наименьшего общего символа в S и предшествующий наиболее общему.

    Ссылки

    1. M.Burrows and D.J.Wheeler. A block-sorting Lossless Data Compression Algorithm. Digital Systems Research Center. SRC report 124. May 10, 1994.

    2. J.L.Bently, D.D.Sleator, R.E.Tarjan, and V.K.Wei. A locally adaptive data compression algorithm. Communications of the ACM, Vol. 29, No. 4, April 1986, pp. 320-330

    3. E.M.McCreight. A space economical suffix tree construction algorithm. Journal of the ACM, Val. 32, No. 2, April 1976, pp. 262-272.

    4. U.Manber and E.W.Mayers, Suffix arrays: Anew method for on-line string searches. SIAM Journal on Computing, Vol. 22, No. 5, October 1993, pp. 935-948.

    Смотри также раздел 2.6.3 “Сжатие данных с использованием преобразования Барроуза-Вилера”,

    Взято с citforum.ru

    Читайте також

    Вплив 5G: розроблено новий протокол вимірювання радіації

    03.01.2025

    Стандарт Wi-Fi 7 офіційно сертифіковано

    09.01.2024

    Apple, Google, Samsung створять стандарт розумних замків та цифрових ключів Aliro

    10.11.2023

    Останні

    Кисень і океани: коли та як розпочалося велике насичення планети

    10.12.2025

    Google випустила велике оновлення Pixel Watch

    10.12.2025

    Вчені створили матеріал, що здатен розблокувати неймовірну силу суперконденсаторів

    09.12.2025

    Як обрати парфум для зимового свята

    09.12.2025
    Facebook X (Twitter) YouTube Telegram RSS
    • Контакти/Contacts
    © 2025 Portaltele.com.ua. Усі права захищено. Копіювання матеріалів дозволено лише з активним гіперпосиланням на джерело.

    Type above and press Enter to search. Press Esc to cancel.

    Ad Blocker Enabled!
    Ad Blocker Enabled!
    Наш вебсайт працює завдяки показу онлайн-реклами нашим відвідувачам. Будь ласка, підтримайте нас, вимкнувши блокувальник реклами.
    Go to mobile version