Він показує великий потенціал для просування розробки високоефективних сонячних батарей наступного покоління, які є життєво важливими для задоволення глобальних енергетичних потреб. Команда з Університету Лехай створила матеріал, який може значно підвищити ефективність сонячних панелей.
Прототип, який використовує цей матеріал як активний шар у сонячному елементі, демонструє середнє фотоелектричне поглинання 80%, високу швидкість генерації фотозбуджених носіїв та зовнішню квантову ефективність (EQE) до безпрецедентних 190% — показник, який значно перевищує теоретичне обмеження ефективності Шоклі-Квейссера для матеріалів на основі кремнію та висуває сферу квантових матеріалів для фотоелектричної енергії на нові висоти.
«Ця робота являє собою значний крок вперед у нашому розумінні та розробці рішень сталої енергетики, висвітлюючи інноваційні підходи, які могли б переосмислити ефективність сонячної енергії та доступність у найближчому майбутньому», — сказав Чінеду Екума, професор фізики, який опублікував статтю про розробку матеріалу з докторантом Lehigh Шріхарі Кастуаром у журналі Science Advances.
Розширені властивості матеріалу
Стрибок ефективності матеріалу в основному пояснюється його відмінними «станами проміжної смуги», специфічними рівнями енергії, які розташовані в електронній структурі матеріалу таким чином, що робить їх ідеальними для перетворення сонячної енергії.
Ці стани мають рівні енергії в межах оптимальних підзонних проміжків — енергетичних діапазонів, де матеріал може ефективно поглинати сонячне світло та виробляти носії заряду — близько 0,78 і 1,26 електронвольта. Крім того, матеріал особливо добре працює з високим рівнем поглинання в інфрачервоній та видимій областях електромагнітного спектра.
Хоча такі матеріали множинної генерації екситонів (MEG) ще мають бути широко комерціалізовані, вони мають потенціал для значного підвищення ефективності сонячних енергетичних систем. У матеріалі, розробленому Lehigh, стани проміжної смуги дозволяють вловлювати енергію фотонів, яка втрачається традиційними сонячними елементами, в тому числі через відображення та виробництво тепла.
Матеріальний розвиток і потенціал
Дослідники розробили новий матеріал, використовуючи переваги «ван-дер-ваальсових проміжків», атомарно малих проміжків між шаруватими двовимірними матеріалами. Ці проміжки можуть обмежувати молекули або іони, і матеріалознавці зазвичай використовують їх для вставки або «інтеркаляції» інших елементів для налаштування властивостей матеріалу.
Щоб розробити свій новий матеріал, дослідники Lehigh вставили атоми нуль-валентної міді між шарами двовимірного матеріалу, виготовленого з селеніду германію (GeSe) і сульфіду олова (SnS).
«Його швидка реакція та підвищена ефективність переконливо вказують на потенціал GeSe/SnS, інтеркальованого Cu, як квантового матеріалу для використання в передових фотоелектричних додатках, пропонуючи шлях для підвищення ефективності перетворення сонячної енергії», — сказав він. «Це багатообіцяючий кандидат для розробки високоефективних сонячних елементів нового покоління, які відіграватимуть вирішальну роль у задоволенні глобальних енергетичних потреб».
Хоча інтеграція нещодавно розробленого квантового матеріалу в поточні системи сонячної енергії потребуватиме подальших досліджень і розробок, Екума вказує на те, що експериментальна техніка, яка використовується для створення цих матеріалів, уже дуже просунута. З часом вчені освоїли метод, який точно вставляє атоми, іони та молекули в матеріали.
Comments