Подобно Земле и множеству других миров, Солнце обладает магнитным полем, которое пронизывает все его недра и простирается далеко за пределами его поверхности. Это поле скачет по поверхности, иногда сворачиваясь в петли и другие сложные структуры. Плазма — ионизированное вещество, которое можно найти на солнце — часто следует этим магнитным структурам.
Но иногда эти почти всегда тесно связанные линии поля сходятся и быстро пересоединяются, в результате чего частицы текут наружу с невероятной скоростью. Скорость пересоединения всегда оставалась загадкой, поскольку не соответствовала уравнениям. Объяснения придумывали годами; ни одно из них не было удовлетворительным. Однако новая теоретическая разработка, наука плазмоидной нестабильности, похоже, разрешила загадку.
- Имеем магнитное поле, созданное любым числом стержневых магнитов.
- Перемещаем эти магниты в разных конфигурациях относительно друг друга.
- Наблюдаем, как линии разъединяются в определенных местах и пересоединяются в других, когда меняются поля.
Вот оно! Магнитное пересоединение. Благодаря серии космических исследований, мы смогли наблюдать и подтвердить явление магнитное пересоединения вполне твердо, как в выбросе солнечных вспышек, так и в полярных сияниях на Земле.
Но дьявол кроется в деталях, как говорится. Для астрофизиков одной из самых важных деталей плазмы является электрический ток. Поскольку плазма состоит из ионизированных атомов и свободных электронов, включая голые атомные ядра, электрические и магнитные поля могут разделять, двигать и разгонять эти частицы до невероятной скорости. Движущиеся заряженные частицы создают электрические токи, и в одной из таких намагниченных сред эти токи сжимаются в тонкие слои — или листы — которые закручиваются и полностью выходят из плазмы. Крупнейший из таких токов в нашей Солнечной системе рождается Солнцем и известен как гелиосферный токовый слой. Будучи толщиной в 10 000 километров, он простирается за орбиту Плутона во всех направлениях.
Группа физиков из Лаборатории физики плазмы Принстона под руководством Луки Комиссо провела серию лабораторных испытаний, которые показали, что решение все это время было у нас перед глазами: лист плазмы — это не постоянная, однородная форма, она может разбиваться на небольшие островки, каждый со своими собственными магнитными свойствами. Вот в чем заключается идея «плазмоидной нестабильности».
Вот как это выглядит: Большой лист тока ведет себя как предсказывала старая наивная модель: как непрерывная, единая форма, в которой ограничено магнитное поле. Во многих отношениях он похож на тонкий лист фанеры. В однородности возникают незначительные девиации и начинают образовываться и расти плазмоидные нестабильности с единой, линейной скоростью. Как будто к фанере применяется небольшая сила и лист изгибается в ответ. Поскольку внешние магнитные свойства продолжают меняться — Солнце вращается, система Земля — Солнце переходит из ночи в день, сменяется конфигурация поля и т. д. — нестабильности меняются меньше, чем делали это прежде.
Как будто вы увеличиваете применяемую силу к фанере, ожидая, что она будет изгибаться сильнее, но вместо этого она просто удерживает напряжение в структуре материала. Это пример хранимой, потенциальной энергии. Наконец, магнитные свойства меняются настолько, что нестабильности будут гораздо более стабильно сконфигурированы, если силовые линии быстро сместятся и пересоединятся. Именно здесь линии поля разбиваются и пересоединяются быстрее, чем прогнозировала любая другая модель. Это сродни тому, что лист фанеры ломается пополам, выпуская накопленную энергию.
Есть четыре величины, которые растут или меняются со временем (вроде числа плазмоидов и сколько времени им нужно для достижения критической фазы пересоединения), и три величины, на которые они опираются (вроде размеров изначальных шероховатостей). В отличие от большинства физических законов, которые являются степенными (то есть х пропорционален y в некоторой степени), эти зависимости таковыми не являются. Такого никто не ожидал. Если вы когда-нибудь задавались вопросом, откуда берутся солнечные вспышки и как они выбрасываются так быстро, ответ заключается в магнитном пересоединении. Мы впервые поняли и теперь можем точно предсказать, как работает это явление не только качественно, но и количественно. Взято с hi-news.ru
Учёные решили загадку сверхбыстрых солнечных вспышек: 3 комментария
Обсуждение закрыто.