«Квантовое радио» улучшит коммуникацию там, где не справляется GPS

Ученые Национального института стандартов и технологий США (NIST) продемонстрировали возможности квантовой физики в сфере телекоммуникаций и предложили использовать «квантовое радио» там, где мобильные сети или GPS могут подвести — в городских джунглях, под водой или под землей.

Группа исследователей NIST работает в области низкочастотного магнитного радио — очень низкочастотных (ОНЧ) магнитных сигналов с цифровой модуляцией, способных проникать сквозь стены зданий, толщу воды и почвы дальше, чем обычные электромагнитные сигналы с более высокими частотами. ОНЧ-электромагнитные поля уже используются, например, для текстовой коммуникации подводных лодок, но не обладают достаточной емкостью для передачи аудио- или видеоданных. Также для передачи сообщений субмарины вынуждены сейчас сбавлять скорость и подниматься на перископную глубину (около 15-18 метров ниже поверхности).

Квантовые сенсоры обладают большей чувствительностью к магнитным полям, что позволяет увеличить зону приема сигнала, а также ширину канала до возможностей сотового телефона. Таким образом, под водой или в другой труднопроходимой для обычных электромагнитных волн местности можно будет свободно пересылать аудио- и видеоинформацию, говорит руководитель проекта Дейв Хоув.

Ученые продемонстрировали возможности обнаружения магнитного сигнала при помощи сенсоров, работающих на квантовых свойствах атомов рубидия. Технология NIST позволила менять магнитные поля атомов, чтобы модулировать частоту, точнее, горизонтальные и вертикальные положения формы сигнала. Во время испытаний сенсоры засекли более слабые сигналы, чем обычно — с силой 1 пТл — и на очень низкой частоте, ниже 1 кГц.

Для дальнейшего улучшения эффективности технологии специалисты NIST строят и тестируют квантовый магнитометр. Это устройство наподобие квантовых часов будет ловить сигналы, переключаясь между уровнями энергии атомов, а также другими их свойствами, объясняет Хоув. Ученые надеются увеличить дальность низкочастотного сигнала, усилив чувствительность сенсора, подавив шумы и повысив эффективность использования пропускной способности сенсора, сообщает Phys.org.

Создан эластичный кремний для электроники будущего

Специалисты Университета Нанкина, Пекина и Французской политехнической школы разработали эластичный кремний, который растягивается вдвое больше своего первоначального размера при сохранении электрических характеристик.

Такие нанопровода могут стать основой полупроводниковых материалов для гибкой электроники будущего, которая до сих пор делалась из полимеров и органических полупроводников, уступающих по своим полупроводящим качествам кремнию. В прошлом ученые делали попытки создания гибких кремниевых нанопроводов, но метод электронно-лучевой литографии, который они применяли, слишком дорогой и непрактичный для изготовления электроники.

Новый метод, предложенный франко-китайской группой ученых, напоминает вытяжку кристаллов, широко распространенную в кремниевой промышленности: затравочный кристалл погружается в расплавленный кремний и медленно вытягивается вверх, таща за собой длинный слиток кремния. Только в этот раз частицы индия движутся по траектории, покрытой аморфным кремнием. В результате получаются кристаллические кремниевые нанопровода.

С точки зрения будущего применения, такой метод производства может стать крайне дешевым и масштабируемым. На выходе можно будет получить надежные, эластичные кремниевые каналы с хорошей производительностью. Такую электронику можно будет использовать в медицинских и носимых датчиках, механических устройствах, полевых транзисторах и наноэлектромеханических системах, сообщает Phys.org.

В будущем ученые планируют исследовать технику переноса кремниевых нанопроводов на более мягкую подложку, что еще сильнее приблизит практическое применение новой технологии.

«Волшебный материал», который изобрели в прошлом году, обладает схожими физическими свойствами с кремнием, но лучшей химической стабильностью, гибкостью и меньшим весом. Любое устройство, сделанное на основе этого соединения, будет обладать уникальными свойствами, которых не существует в природе.

Amazon запатентовала зеркало дополненной реальности

За последние годы виртуальная и дополненная реальности перестали быть чем-то невообразимым и фантастическим и стали вещами, которые мы без труда уже сейчас можем представить в нашей жизни.

Но если кто-то до сих пор думает, что подобные продукты могут быть использованы только лишь в сфере интерактивных развлечений, то компания Amazon спешит вас в этом разубедить, ведь ее специалисты недавно запатентовали умное AR-зеркало.

Основным назначением такого изобретения является помощь в выборе одежды. После того как человек выберет наряд из каталога вещей, умная электроника точно «наденет» его прямо на будущего владельца.

При этом одежда не будет выглядеть ненатурально, и будет имитироваться не только внешний вид одежды, но и ее физические свойства. Но и это еще не все: умное зеркало сможет предоставлять владельцу альтернативные варианты фона и освещения, чтобы у пользователя имелась возможность увидеть, как одежда будет выглядеть в разных условиях.

Можно подумать, что такое изобретение окажется никому не нужным, но за его разработку отвечает Amazon, авторы которой воплотили в жизнь уже не одну свежую идею.

Более того, недавно специалисты компании разработали умную камеру, которая могла подобрать человеку одежду, причёску или макияж, так что необходимая база у Amazon имеется.

А если учесть тот факт, что многие магазины одежды стараются все больше обходить конкурентов в различных аспектах, то нельзя исключать возможности, что какая-нибудь крупная торговая сеть по производству одежды возьмет подобную технологию на вооружение. Взято с hi-news.ru

Создана металинза, способная фокусировать все цвета света в одну точку

Уже рассказывалось о металинзах различного типа, плоских оптических устройствах, поверхность которых покрыта наноструктурами определенной формы и размеров, которые способны заменить большие изогнутые стеклянные линзы, используемые в различных оптических устройствах.

Однако, большинство созданных ранее металинз имели ограничения по ширине спектра света, который они могли эффективно фокусировать и преломлять. А недавно исследователи из Школы технических и прикладных наук (School of Engineering and Applied Sciences, SEAS) Гарвардского университета создали первую в своем роде металинзу, которая способна фокусировать в единую точку абсолютно все составляющие белого света, другими словами, работающую во всем спектре видимого света.

Обеспечение одинаковой работы оптических компонентов во всем спектре видимого света является достаточно сложной задачей из-за того, что свет с различными длинами волн перемещается в любом материале с различной скоростью. К примеру, красный свет распространяется в стекле быстрей синего света, и два луча разного цвета достигнут одной точки с небольшой разбежкой во времени. Такая неравномерность служит причиной возникновения искажений, известных под названием хроматических аберраций.

Для борьбы с такими искажениями в объективах высококачественных камер, телескопов и других инструментов используется несколько линз, изготовленных из материалов, имеющих немного отличные оптические свойства. Естественно, все это делает оптические устройства более громоздкими, тяжелыми, сложными и дорогостоящими.

«Металинзы имеют множество преимуществ по сравнению с обычными линзами» — рассказывает профессор Федерико Капассо (Federico Capasso), — «Они тонки, легки и просты в изготовлении. И теперь эти преимущества можно использовать по отношению ко всему диапазону видимого света».

Созданные учеными металинзы покрыты столбиками из диоксида титана. Эти столбики имеют различную высоту, толщину и они расположены на различном удалении друг от друга для того, чтобы при их помощи можно было фокусировать свет с различными длинами волн. Свет с различными длинами волн проходит к точке фокусировки различными путями и прибывает туда в один и тот же момент времени. Параметры массива этих столбиков определяют общий коэффициент преломления металинзы.

В настоящее время исследователи изготовили опытный образец новой металинзы, диаметром всего в пару миллиметров. Но в самом ближайшем времени они закончат разработку технологии, которая позволит изготавливать такие металинзы, диаметр которых уже будет исчисляться сантиметрами. И после этого такие металинзы можно будет использовать в камерах, микроскопах, устройствах дополненной, виртуальной реальности и других оптических устройствах, которые, благодаря этому, станут легче, компактней и значительно дешевле. Взято с dailytechinfo.org

Термоэлектрические генераторы скоро станут реальностью

Термоэлектрические (ТЭ) генераторы являются тем, что уже давно рассматривается в качестве перспективной технологии, подходящей для преобразования в электрическую энергию тепла, просто выбрасываемого в окружающую среду с выхлопными газами автомобилей или промышленными предприятиями, к примеру.

Несмотря на массу исследований, проведенных в данном направлении, созданные термоэлектрические генераторы являются устройствами, работающими при достаточно высоких температурах. Однако, недавно, исследователи из университета Осаки, совместно с инженерами компании Hitachi, Ltd., разработали новый материал с достаточно высокими термоэлектрическими параметрами и эффективностью работы при комнатной температуре.

Термоэлектрические генераторы, изготовленные из специальных материалов, вырабатывают электрический ток в случае, если их одна сторона нагрета сильней, чем вторая. Помимо этого, термоэлектрический эффект может работать и в обратную сторону, регулируя электрический ток через материал, подаваемый от внешнего источника, можно поддерживать заданный температурный градиент между сторонами материала. Все термоэлектрические материалы обладают достаточно высокой электрической проводимостью, плюс низкой теплопроводностью, что не допускает произвольного выравнивания температурного градиента. Эффективность работы термоэлектрического материала выражается значением параметра, называемого коэффициентом мощности, который пропорционален электрической, тепловой проводимости и константе, называемой коэффициентом Сибека (Seebeck coefficient).

«К сожалению, в состав большинства термоэлектрических материалов входят редкие и дорогие или токсичные элементы» — пишут исследователи, — «Мы же объединили обычный и распространенный кремний с иттербием, получив силицид иттербия (YbSi2). Мы сделали выбор в пользу иттербия в силу нескольких причин. Во-первых, большинство его соединений хорошо проводят электричество, во-вторых, силицид иттербя является нетоксичным материалом. Кроме этого, материал обладает уникальным свойством, называемым колебаниями валентности, что делает его эффективным термоэлектрическим материалом при нормальной температуре окружающей среды».

Часть атомов иттербия, входящих в состав YbSi2, имеют валентность +2, а другая часть — +3. При этом, в материале постоянно происходит «колебательный эффект», называемый резонансом Кондо (Kondo resonance), когда валентность атомов начинает изменяться от одного значения к другому и наоборот. Все это увеличивает значение коэффициента Сибека и обеспечивает достаточно сильный термоэлектрический эффект при комнатной температуре.

Еще одним преимуществом YbSi2 является его необычная «слоистая» структура. Атомы иттербия формируют кристаллографические плоскости, подобные тем, которые существуют в чистом металле. Атомы же кремния формируют листы с шестиугольной решеткой, напоминающие графит, расположенные между кристаллографическими плоскостями иттербия. Такая структура эффективно подавляет удельную теплопроводность материала, а еще большего подавления теплопроводности можно добиться путем введения в материал дефектов, примесей и создания наноразмерных структур.

В результате всех ухищрений ученых новый материал демонстрирует высокий коэффициент мощности в 2.2 мВт/м*К^2 при комнатной температуре. Такой показатель уже сопоставим с аналогичным показателем самых эффективных термоэлектрических материалов на основе токсичного теллурида висмута. «Успешное использование иттербия демонстрирует, что путем отбора «правильных» материалов можно получить необходимый набор параметров, требующихся для обеспечения высокой эффективности термоэлектрического материала» — рассказывает Кен Куросаки (Ken Kurosaki), — «И термоэлектрические генераторы, изготовленные из таких материалов, позволят нам сократить потери энергии, возникающие при ежедневном пользовании обычными бытовыми технологиями». Взято с dailytechinfo.org

Разработан материал, обладающий рекордным показателем теплопроводности

Практически в самом конце прошлого года представители компании Fujitsu объявили о разработке процесса производства листов материала, состоящего из многостенных углеродных нанотрубок. Эти нанотрубки расположены перпендикулярно плоскости материала и именно в этом направлении данный материал обладает самым высоким на сегодняшний день показателем теплопроводности. Изделия из такого нанотрубочного материала, сформованного определенным образом, могут выступать в качестве эффективного теплоотвода для электронных устройств, включая и силовые устройства из карбида кремния, используемые в современных электрических автомобилях.

Согласно результатам проведенных испытаний листы нанотрубочного материала способны проводить и рассеивать тепло с эффективность 80 Ватт на метр на градус Кельвина. Это примерно в три раза большая теплопроводность, нежели теплопроводность листового индия, материала, используемого в некоторых областях для обеспечения высокоэффективного охлаждения.

Самой большой проблемой, которую удалось успешно решить специалистам компании Fujitsu, стала проблема выращивания однородных по размерам углеродных нанотрубок при помощи процесса химического осаждения из паровой фазы. Ведь при малейших отклонениях от нормы любого из параметров этого процесса на поверхности металлической подложки начинают «произрастать» нанотрубки различных размеров и удельной плотности. Именно эта проблема препятствовала долгое время появлению технологий крупномасштабного производства листовых нанотрубочных материалов.Специалисты лаборатории Fujitsu Devices & Materials Laboratory разработали новый процесс, позволяющий с высокой точностью контролировать температуру и давление газа в камере, где производится процесс осаждения нанотрубок на поверхность, на которую нанесены частицы металлического катализатора. Все это приводит к росту «леса» из однородных нанотрубок, расположенных строго перпендикулярно к основанию. Размеры листов материала, которые можно произвести таким образом, ограничены размерами заготовок основания и равны 200 миллиметрам.

Материал, состоящий из многостенных нанотрубок, которые после выращивания проходят специальную химическую обработку, может выдерживать нагрев до температуры в 700 градусов Цельсия. Это намного больше возможностей листового индия, температура плавления которого составляет порядка 160 градусов.

Компания Fujitsu собирается коммерциализировать данную технологию к 2020 году. Но до этого времени им придется решить проблему высокой стоимости нового материала, которая намного превышает стоимость традиционных материалов, используемых в качестве теплоотвода. Это, в первую очередь, может быть достигнуто за счет улучшения технологического процесса производства такого материала. Но и без кардинального снижения стоимости такой материал уже может быть использован в космической технике, в высоковольтной силовой электронике и в других областях, где затраты не играют главную роль и где требуется эффективное охлаждение устройств, работающих при температурах в 200 градусов Цельсия и выше.

Exit mobile version