Долго ли ждать удешевлённые флагманы от Samsung?

Каждый знаток высоких технологий знает о том, что флагманские устройства именитых производителей — удовольствие не из дешёвых. К примеру, заявленная стоимость новенького Galaxy Note 7 составляет 65 тысяч рублей.

А потому неудивительно, что всё больше пользователей делают выбор в пользу более доступных устройств китайских производителей. Бороться с данной тенденцией южнокорейский гигант может при помощи продаж восстановленных устройств. Что это и когда ждать возможности приобрести смартфон по более приятной цене? Давайте узнаем.

Стоит отметить, что продажами восстановленных смартфонов активно занимается компания Apple. Благодаря этому на покупке iPhone можно сэкономить пару-тройку процентов его стоимости. В целом в этом нет ничего страшного, а происходит всё следующим образом.

Первый владелец нового аппарата по какой-то причине возвращает свой смартфон компании. После этого сотрудники производителя меняют некоторые составляющие и отправляют на продажу по сниженной цене. О возможной реализации данной инициативы компанией Samsung сообщили сотрудники Reuters. Если верить источнику, речь идёт о замене корпуса и аккумулятора устройств, которые возвращаются участниками программы по ежегодной замене смартфонов.

Возможная скидка на такие девайсы в сравнении с новыми остаётся неизвестной. Как бы там ни было, не заметить разницы не получится при всём желании. Взято с androidinsider.ru

Кристалл, который может сокрушить алмаз: в поисках самого твердого материала

В центре нашей планеты породы весом в миллиарды тонн создают силу, которая в три миллиона раз превышает атмосферное давление на поверхности. Тем не менее на столешнице своей скромной лаборатории на севере Баварии физик Наталья Дубровинская может превысить даже это сумасшедшее давление в несколько раз, благодаря устройству, которое умещается у нее в руке. Несколько точных поворотов винтов в верхней части небольшого цилиндра — и она может создать давление, в три раза превышающее давление в ядре Земли. Удивительно, но вместе с коллегами из Университета Байройт она обнаружила удивительный материал, способный выдерживать эту феноменальную силу. Он настолько твердый, что может оставить вмятину в кристалле алмаза, который долгое время считался самым твердым материалом в мире.

Ее новое вещество — это кульминация десятилетних поисков современных алхимиков, ученых, которые химичили и возились с химической структурой веществ, пытаясь подстроить и изменить их свойства нужным образом. Это путешествие, в котором было много фальстартов и тупиков. Но последние достижения ученых могут иметь широкие последствия, от прорывов в медицине до изменения нашего понимания далеких миров. Любовь человечества к твердым материалам восходит к самым первым дням нашего вида, когда наши предки начали использовать твердые камни, чтобы придавать форму другим более мягким камням, делая из них лезвия. Постепенно их заменяли все более твердыми металлами, пока около 2000 лет не произвели первую сталь. Она оставалась самым твердым известным материалом до 18 века, а потом ученые выяснили, что могут покрывать инструменты алмазами.

Несмотря на очевидную привлекательность для ювелирных изделий, большинство обработанных алмазов используется для создания сверхтвердых покрытий для износостойких инструментов и сверл. В горнодобывающей и нефтяной промышленности такие алмазные инструменты просто необходимы — без них пробиться через сотни метров пород к ценным ресурсам в глубине Земли было бы чрезвычайно трудно, если вообще возможно.

«Твердое покрытие необходимо для разного рода применений, начиная от высокоскоростных режущих инструментов, глубоководных сверл, добычи газа и нефти и заканчивая биомедицинским применением», — говорит Ягдиш Нараян, главный материаловед в Университете штата Северная Каролина.

Чтобы понять, что делает материал твердым, нужно взглянуть на атомную структуру его кристаллов. Алмазы образуются из тех же атомов углерода, который составляют мягкий графит — его можно найти в сердцевинке любого карандаша. Разница между этими двумя формами углерода заключается в расположении атомов. Графит формируется из листов атомов углерода, расположенных плоскими шестиугольниками, которые удерживаются слабыми силами притяжения между каждым слоем. В алмазе же атомы углерода удерживаются в форме тетраэдра, которая чрезвычайно жесткая. В сочетании с тем, что углерод образует сильные связи, это и рождает твердость алмаза.

Слово «алмаз», «адамант», «диамант», «diamond» происходит от древнегреческого «адамас», что означает несокрушимый. Правда, при достаточно высоком давлении ломается и алмаз. Крошечные слабинки в кристалле также могут ослабить его, что делает алмаз уязвимым к распаду. И это создает для ученых проблему: как изучать поведение материалов при высоком давлении, если даже самый твердый встречающийся в природе материал может разрушиться? Нужно найти что-то более стойкое.
Ложная надежда
Вряд ли вас удивит, что поиск сверхтвердого материала начинается с попытки повторить структуру алмаза, но, по правде говоря, существует не так много элементов, способных связываться между собой таким же образом. Один из таких материалов — нитрид бора. Подобно углероду, этот синтетический материал бывает в нескольких формах, но можно повторить структуру алмаза, заменив атомы углерода атомами азота и бора. Впервые созданный в 1957 году «кубический нитрид бора» был достаточно твердым, чтобы оцарапать алмаз — как заявляли изначально. Но более поздние тесты показали, что этот материал даже и в половину не такой же твердый, как его аналог на основе углерода.

Следующие несколько десятилетий породили ряд разочарований, когда ученые начали искать способы связать три этих элемента — азот, бор и углерод — в разных формах. Из тонких пленок одного из таких материалов, что были созданы в 1972 году, смогли создать форму, имитирующую структуру алмаза; но из недостатков было то, что процесс включал сложную химию и чрезвычайно высокие температуры для производства. И только в 2001 году алмазоподобный нитрид бора был создан учеными Национальной академии наук Украины в Киеве совместно с коллегами из Франции и Германии. И хотя этот новообнаруженный материал был тверже кристаллов кубического нитрида бора, он все еще проигрывал алмазу.

Затем, семь лет назад, Чангфенг Чен, физик из Университета штата Невада, и его коллеги из Шанхайского университета Цзяо Тун в Китае решили, что смогут свергнуть алмаз с пьедестала. Они рассчитали, что причудливая шестиугольная форма нитрида бора, известная как вюрцит нитрида бора, сможет выдержать на 18% больше давления, чем алмаз. Этот редкий материал имеет подобную алмазу и кубическому нитриду бора четырехгранную структуру, только связи сформированы под разными углами.

Компьютерное моделирование поведения такого материала под давлением показало, что некоторые из этих связей являются гибкими и переориентируют себя на 90 градусов, оказываясь в условиях напряжения, чтобы его снять. Хотя связи алмаза аналогичным образом реагируют на давление, вюрцит нитрида бора становится на 80% тверже при более высоком давлении. Загвоздка в том, что его довольно опасно создавать — для этого придется искусственно создать взрывы, которые имитируют условия высокого тепла и давления вулканических взрывов.

Очевидно, получить их в достаточных объемах будет весьма трудно. Аналогичные проблемы ограничивают потенциал исследований похожего вещества, известного как лонсдейлит, которое должно быть в состоянии выдерживать на 58% больше давления, чем обычные кристаллы алмаза. И лишь в последние несколько лет мы начали наблюдать некоторые прорывы. В 2015 году Джагдиш Нараян и его коллеги из Университета штата Северная Каролина расплавили некристаллическую форму углерода (стеклоуглерод) быстрым лазерным импульсом, нагрев ее до 3700 градусов по Цельсию, а после быстро охладили. Это охлаждение, или гашение, привело к созданию Q-углерода, странной, но исключительно прочной аморфной форме углерода. В отличие от других форм углерода, эта магнитная и светится при воздействии света. Структура этого материала по большей части представлена связями алмазного типа, но также имеет от 10 до 15 процентов связей графитного типа.

Испытания показали, что Q-углерод может быть минимум на 60% тверже алмаза, но это еще предстоит утвердить окончательно. Настоящие испытания на твердость требуют сравнения образцов с наконечником, который тверже испытуемого материала. Пытаясь продавить образец Q-углерода двумя заостренными алмазными наконечниками, появляется проблема: алмазные кончики деформируются. И вот здесь-то могут пригодиться сверхтвердые наковальни Дубровинской. Ее новый материал представляет собой уникальную форму углерода, известную как нанокристаллические алмазные шарики, и, вместо того чтобы состоять из единой кристаллической решетки атомов углерода, он состоит из множества крошечных отдельных кристаллов — каждый в 11 000 раз меньше толщины человеческого волоса — связанных между собой слоем графена, не менее удивительного материала в один атом углерода толщиной.

Если алмазный кристалл начинает уступать при давлении в 120 ГПа, новый материал может выдержать не меньше 460 ГПа. Он даже может пережить сдавливание для генерации давления до 1000 ГПа. Эти крошечные сферы тверже любой другой известной субстанции на планете. Чтобы почувствовать его силу, представьте 3000 взрослых африканских слонов, балансирующих на одной шпильке. «Это самый твердый из всех известных сверхтвердых материалов», говорит Дубровинская. Нанокристаллические алмазные шарики также прозрачные, что позволяет им выступать в роли крошечных линз, через которые исследователи могут всматриваться в раздавливаемый материал, используя рентгеновское излучение. «Это позволяет нам сдавливать исследуемый материал и наблюдать за происходящим, — говорит Дубровинская. — Достижение сверхвысокого давления открывает новые горизонты для более глубокого понимания материи». Дубровинская и ее коллеги уже применили это для изучения осмия, металла, который находится в числе наиболее устойчивых к сжатию в мире. Они обнаружили, что осмий может сопротивляться сжатию с давлением более 750 ГПа. В этой точке внутренние электроны, которые обычно тесно связаны с ядром атома металла и являются весьма стабильными, начинают взаимодействовать между собой. Ученые полагают, что это странное поведение может привести к переходу металла из твердого в ранее неизвестное состояние вещества. Было бы весьма интересно изучить, какие свойства осмий при этой приобретает. Сверхтвердые наноалмазы попросту позволяют создать новые режущие края для резьбы по металлу и камню. В порошкообразной форме такие наноалмазы находят применение в косметической промышленности, поскольку обладают высокой впитывающей способностью. Они также легко впитываются в кожу, унося с собой активные вещества. Медицинская промышленность начинает изучать способы использования наноалмазов для переноса лекарств, например, в процессе химиотерапии в труднодоступных участках тела.

Исследования также показали, что наноалмазы могут способствовать росту кости и хряща. Что самое любопытное, эта недавняя работа может помочь нам раскрыть несколько тайн нашей Солнечной системы. В следующем месяце пройдет международная конференция, на которой эксперты обсудят новые возможности. Если в центре Земли давление, как полагают, доходит до 360 ГПа, в ядре газового гиганта Юпитера давление может достигать невероятных 4500 ГПа. При таком давлении элементы начинают вести себя странным образом.

Водород — в обычном состоянии газ — начинает вести себя как металл, например, и становится способным проводить электричество. Дубровинская и Дубровинский надеются, что их сверхтвердые алмазы могут помочь нам воссоздать эти космические условия. «Мы могли бы смоделировать недра гигантских планет или внеземных суперземель за пределами нашей Солнечной системы. Думаю, еще более удивительно то, что мы можем делать это с помощью чего-то, что можем держать в руках». Взято с hi-news.ru

Космические фабрики: неизбежное будущее человечества?

В октябре 1957 года научная фантастика воплотилась в реальность: в космос отправился «Спутник», первый посланник Земли. С тех пор прогресс неустанно двигался вперед. Люди, мужчины и женщины, неоднократно посещали космос, проводили исследования, возможно, даже любили друг друга. Мы привыкли видеть в космосе полигон для ученых, но может ли он стать в будущем более полезным для человечества? Сможем ли мы однажды получить экономическую выгоду от промышленной деятельности в космосе, например, в виде космических фабрик, использующих плюсы микрогравитации? Правительства, финансирующие дорогущие космические миссии, давно ищут способы наладить экономическую отдачу. В конце 1990-х годов NASA приветствовало любые инициативы, заявляющие, что смогут извлечь из космоса деньги. В ходе этого финансового стимулирования появились многие заявления на тему создания орбитальной промышленности. Отсутствие силы тяжести позволит выращивать белковые кристаллы, необходимые для борьбы с раком, говорили они. Новые материалы, произведенные в условиях невесомости, будут обладать новыми полезными свойствами, говорили они.

И многое другое. Однако затраты на запуск материалов и необходимого оборудования, обработку ингредиентов с последующим возвращением на Землю постепенно показали: эти идеи экономически нецелесообразны. Стоимость отправки грузов в космос приближается к стоимости золота за килограмм. В итоге выходит, что любое производство и обработка в космосе будет слишком дорогим, чтобы стоило этим вообще заниматься. Грядут ли перемены?
Ближайшее будущее
У нас уже имеются определенные возможности для промышленного освоения космоса на Международной космической станции. Она вращается вокруг Земли 16 раз за день, и на ее борту порядка шести астронавтов. Ежедневно на МКС проводится широкий спектр экспериментов в области биологии и физики — по сути, МКС — это лаборатория микрогравитации. Многие из этих экспериментов генерируют информацию, имеющую непосредственно отношение к промышленности. В качестве одного из примеров, понимание того, как текут расплавленные металлы в процессе отливки сложных форм, требует измерений свойств металла вблизи температуры плавления. Лучше всего это делать с образцами, плавающими в условиях микрогравитации. Полученные данные улучшат будущее экономики и надежность литья на Земле. Условия микрогравитации выступают важным инструментом в понимании физических и биологических процессов, протекающих и на Земле. Недавно Европейское космическое агентство обратилось к промышленности в поисках новых идей для коммерческого участия в МКС.

Большинство предложений были сосредоточены на обеспечении дешевого доступа к МКС с использованием упрощенного оборудования, а не на новых промышленных процессах. Так что промышленность получает шанс поучаствовать и опробовать новые идеи, но в целом ее направленность лежит в поиске дешевых способов достичь космоса и покинуть его, не говоря уж о проведении бизнеса в микрогравитации. Время жизни МКС ограничено. ЕКА примет решение касательно продления срока службы МКС в декабре этого года совместно с NASA, и скорее всего, станция проработает до 2024 года. Затем она сойдет с орбиты и к 2030 году будет уничтожена. Следующий шаг за пределы МКС в настоящее время обсуждается под странным названием «жилой среды глубокого космоса» (Deep Space Habitat, DSH). Это должна быть временная колония, удаленная от Земли и даже от низкой околоземной орбиты, на которой плавает МКС. Ее построят с использованием аппаратного обеспечения, оставшегося от МКС, и будут обрабатывать материалы из окрестностей Луны или астероидов для поддержания работы этой среды, тем самым снизив стоимость на ее обслуживание.  В первую очередь будут обращать внимание на воду и кислород, поскольку их необходимо около 30 килограммов на одного человека в сутки.
Далекое будущее
Дальнейшие миссии освоения космоса получат существенный толчок, благодаря обработке материалов на астероидах — особенно если удастся производить из них ракетное топливо или строительные материалы — но это будет не скоро. Среди актуальных предложений — разработка астероидов, которая обещает долгосрочную экономическую выгоду для всех. Материалы, присутствующие на астероидах, имеются на поверхности многих планет, но в последнем случае их добыча и обработка будет дороже, чем любой другой вариант. В настоящее время планируются миссии по разработке ресурсов на Луне, спутнике Марса Фобос и других небесных объектах, но реализация их начнется не раньше чем через десять лет.

Нам еще только предстоит определить многие материалы, которые могут быть созданы в условиях микрогравитации и найдут серьезное применение повсюду. Возможностей масса. Создание твердой пены путем введения газов в смесь расплавленного стекла и охлаждение этой массы в условиях микрогравитации (без гравитационного разделения компонентов) позволит создать строительный материал с прочностью стали и сопротивлением коррозии, присущим стеклу. Однако более вероятно, что продукт таких фабрик пойдет на производство других фабрик и космических станций. Десятки лет назад люди грезили «космическими колониями» вдали от Земли. Они должны были быть независимы от Земли в условиях кризиса и обладали бы самоподдерживающимися системами. «Спутник», МКС, а потом и Deep Space Habitat — все это шаги на пути к таким колониям. После их создания, возможно, именно на них мы будем полагаться в процессе жизни, удаляясь все дальше от Земли. Взято с hi-news.ru

Samsung продолжает разочаровывать своих клиентов

В последнее время позиции компании Samsung на рынке мобильной электроники выглядят даже слишком впечатляюще. На росте авторитета корейцев, предлагавших некогда сугубо утилитарные устройства, сказалась переориентация на выпуск действительно красивых и качественных флагманов, то и дело заявляющих о себе либо рекордными продажами, либо близкими к рекордным цифрами предзаказов.

Но ведь, согласитесь, эта идиллия не могла продолжаться слишком долго. Согласно официальным данным, опубликованным представительством Samsung в Голландии, в компании было решено прекратить плановую поддержку планшета Galaxy Tab S первого поколения.

Это означает, что долгожданное обновление Android 6.0 Marshmallow, которое, по некоторым данным, уже находилось на завершающей стадии тестирования, обойдет устройство стороной.

Данная информация, несмотря на подтвержденный характер, мало коррелирует с логикой и чаяниями владельцев, уверенных в перспективности любимого гаджета.

Samsung Galaxy Tab S был представлен в июне 2014 года в 8,4- и 10,5-дюймовом исполнении.

«Таблетки» могли похвастать лучшими на рынке SuperAMOLED-матрицами с 2К-разрешением и весьма производительным чипсетом Exynos 5420 о восьми ядрах с тактовой частотой 1,9 ГГц. Устройства поставлялись с предустановленной версией Android 4.4.2, обновленной впоследствии до Android Lollipop.

Окончательно сомнения в скором выходе Marshmallow для Tab S первого поколения у пользователей планшета развеяло обновление Galaxy S5, представленного двумя месяцами ранее и имеющего схожее «железо».

О причинах принятого решения в компании не сообщают. Взято с androidinsider.ru

Мерцание звезд определяет силу гравитации

Мерцание звезды может пролить свет на силу притяжения гравитации на ее поверхности, говорят исследователи.

Мерцание, может дать нам больше информации о притяжении звезды, оно же поможет узнать эволюционное состояние не только звезд, но и любых планет, которые могут иметь близкую орбиту к изучаемым звездам.Колебания света звезд, подобных Солнцу, являются результатом целого комплекса факторов, таких как наличие темных, холодных районов на ее поверхности. Эта пятнистость или грануляция, результат того, что материал из которого состоит звезда, поднимается и опускается.

Сила притяжения на поверхности этой звезды в свою очередь может влиять, на силу и активность таких перемещений.

Поверхностная гравитация в принципе, может пролить свет на многие другие свойства звезд, такие как температура и химический состав.

Астрономы могут узнать силу поверхностной гравитации некоторых ярких звезд с погрешностью всего в 2 процента, анализируя ритмические колебания применив стратегию, известную как – астросейсмология.

Однако, этот метод работает только на нескольких сотнях из самых близких и самых ярких звезд, а это ничтожная часть от общего количества звезд на небе.

Исследователи обнаружили, что они могут выяснить какова поверхностная гравитация звезд, глядя на то, как изменялась их яркость путем анализа высокоточных снимков более чем 150 000 звезд, сделанных космическим телескопом НАСА «Кеплер».

Затем они сравнили свои результаты со значениями поверхностной гравитацией нескольких звезд, рассчитанных независимо, с помощью астросейсмологии.

Ученые говорят: «Получается, мы можем точно измерить ключевые фундаментальные свойства звезды, действительно легким и концептуально простым способом».

Этот новый метод может также помочь дать новые подсказки о звездной эволюции. Исследователи отметили, что чем старше становится звезда, увеличиваясь в размерах, тем ее мерцание становится медленнее. Взято с http://astronews.ru

«Убийца» Android обманывал инвесторов о числе своих пользователей

Попавшие в руки журналистам документы заставляют усомниться в правдивости озвученных компанией Cyanogen цифр объема пользовательской базы. Судя по внутренним данным, она как минимум вдвое меньше, чем заявлялось публично.

Преувеличение в два раза

Компания Cyanogen обманула инвесторов, аналитиков и пользователей, следящих за ее успехами, сообщив более чем в два раза завышенную цифру количества пользователей своей прошивки.

В распоряжение The Information попал документ, подготовленный двумя топ-менеджерами Cyanogen для совета директоров в марте 2016 г. В нем сказано, что прошивкой пользуется около 25 млн человек. Это в два раза меньше цифры в 50 млн пользователей, которую в 2015 г. назвал генеральный директор Cyanogen Кирт МакМастер (Kirt McMaster). В 2014 г. он озвучил цифру в 20 млн пользователей.

Данные анонимных источников

Два независимых источника, имеющие доступ к конфиденциальным данным Cyanogen, на условиях анонимности сообщили изданию The Information, что по состоянию на лето 2016 г. (месяц не уточняется) прошивками CyanogenMod и Cyanogen OS пользовалось около 7 млн человек.

Прошивка Cyanogen

Cyanogen — американская компания, создавшая альтернативную Android-прошивку для мобильных устройств. Существует две версии прошивки — CyanogenMod и Cyanogen OS. CyanogenMod разрабатывается и выпускается независимым сообществом при поддержке компании Cyanogen. Cyanogen OS — «коммерческая» версия CyanogenMod, которую Cyanogen предлагает предустанавливать производителям устройств.

Фактическая величина пользовательской базы Cyanogen может оказаться вдвое меньше озвученных публично цифр
CyanogenMod сущестует для более 400 моделей мобильных устройств. Преимущественно это смартфоны, но встречаются и планшеты. Количество устройств с Cyanogen OS гораздо меньше и исчисляется примерно одним десятком, хотя отличие здесь в основном кроется в схеме распространения и лицензирования — для конечного пользователя различий в функциональности и частоте обновлений нет.

Выход на OnePlus One и ссора с OnePlus

Популярность Cyanogen стала расти после выхода этой прошивки на «убийце флагманов» 2015 г. OnePlus One. После этого количество устройств с Cyanogen OS стало расти. Например, эта прошивка в чистом виде используется в смартфонах Zuk, суббренда Lenovo.

В 2014 г. Cyanogen заключила соглашение об эксклюзивной дистрибуции Cyanogen-устройств в Индии с индийской компанией Micromax. В результате OnePlus, для которой рынок Индии является лакомым куском, отказалась от прошивки Cyanogen и разработала собственную Android-прошивку OxygenOS. Второй аппарат компании, OnePlus 2, вышел уже с ней.

Сокращение штата

В конце июля 2016 г. появилась информация, что Cyanogen планирует сократить 20% своего штата или около 30 из 136 человек. Информацию сообщило издание ReCode. В самой компании об этом не объявляли. По данным ресурса, увольнения планируются в подразделении, которое занимается разработкой коммерческой версии прошивки — Cyanogen OS. Взято с  http://cnews.ru

Exit mobile version